Лекции о теплотехнике

Содержание

IS-диаграмма

Водоснабжение, водоподготовка и очистка сточных вод

Для просмотра сайта используйте Internet Explorer



Тема 6.ВОДЯНОЙ ПАР


6.1.Основные понятия и определения

Известно, что любое вещество в зависимости от внешних условий (давления и температуры) может находиться в газообразном, жидком и твердом агрегатных состояниях, или фазах, а также одновременно находиться в двух или трех состояниях.

Переход вещества из одного агрегатного состояния в другое называется фазовым переходом, или фазовым превращением. Вещество в разных агрегатных состояниях имеет различные свойства, в частности плотность. Это различие объясняется характером межмолекулярного взаимодействия.

Переход вещества из твердого состояния в жидкое называется плавлением, из жидкого в газообразное — испарением, из твердого в газообразное — сублимацией. Обратные процессы соответственно называются затвердеванием, или кристаллизацией, конденсацией и де-сублимацией.

Процесс получения пара из жидкости может осуществляться испарением и кипением. Испарением называется парообразование, происходящее только со свободной поверхности жидкости и при любой температуре.

Кипением называется бурное парообразование по всей массе жидкости, которое происходит при сообщении жидкости через стенку сосуда определенного количества теплоты. При этом образовавшиеся у стенок сосуда и внутри жидкости пузырьки пара, увеличиваясь в объеме, поднимаются на поверхность жидкости.

Процесс парообразования начинается при достижении жидкостью температуры кипения, которая называется температурой насыщения tн и на протяжении всего процесса остается неизменной. Температура кипения, или температура насыщения, tн зависит от природы вещества и давления, причем с повышением давления tн увеличивается. Давление, соответствующее tн называется давлением насыщения рн.

Насыщенным паром называют пар, который образовался в процессе кипения и находится в динамическом равновесии с жидкостью. Насыщенный пар по своему состоянию бывает сухим насыщенным и влажным насыщенным.

Сухой насыщенный пар представляет собой пар, не содержащий капель жидкости и имеющий температуру насыщения (t=tн) при данном давлении.

Влажный насыщенный пар – это равновесная смесь, состоящая из капель жидкости, находящейся при температуре кипения, и сухого насыщенного пара.

Отношение массы сухого насыщенного пара mс.п. к массе влажного насыщенного пара mв.п. называется степенью сухости х влажного пара, то есть


Очевидно, что для жидкости х=0, для сухого насыщенного пара х=1.

Если к сухому насыщенному пару продолжать подводить теплоту, то его температура увеличится. Пар, температура которого при данном давлении больше, чем температура насыщения (t>tн), называется перегретым. Другими словами говоря перегретый пар – это пар, находящийся при температуре, превышающей температуру кипения жидкости при давлении, равном давлению перегретого пара. Величина превышения температурой пара температуры кипения жидкости называется степенью перегрева пара.

Водяной пар является реальным рабочим телом и может находиться в трёх состояниях: влажного насыщения, сухого насыщения и в перегретом состоянии. Для технических нужд водяной пар получают в паровых котлах (парогенераторах), где специально поддерживается постоянное давление.


6.2.Схема парогенератора

Котельная установка (парогенератор) служит для получения пара в широком диапазоне параметров и состоит из котельного агрегата и вспомогательного оборудования, связанных единой технологической схемой. К вспомогательному оборудованию относятся устройства топливо подачи, дымососы, золоуловители, паропроводы, водопроводы и др.

Схема котельного агрегата представлена на рис. 6.1.

Котельный агрегат П-образной компоновки состоит из подъёмного 1 и опускного газоходов. Подъёмный газоход 2 представляет собой топку для сжигания топлива, на стенках которой установлены испарительные поверхности нагрева 3 в виде плоских трубчатых панелей, называемых экранами.

В опускном газоходе расположены водяной экономайзер 4 для подогрева питательной воды и воздухоподогреватель 5 для подогрева воздуха, идущего на горение в топку. На выходе из подъёмного газохода расположен фестон 6, представляющий собой разреженный пучок труб - продолжение заднего экрана.

В горизонтальной части газохода расположен пароперегреватель 7, обеспечивающий нагрев пара до заданной температуры.

Рис. 6.1. Схема котельного агрегата

Испарительные поверхности 3 сообщаются с барабаном котла 8 и вместе с опускными трубами 9, соединяющими барабан с нижними коллекторами 10 экранов, составляют циркуляционные контуры. Паровая смесь в барабане разделяется на насыщенный пар и воду, пар направляется в пароперегреватель, вода - снова в циркуляционные контуры. Циркуляция воды и пароводяной смеси в контурах происходит за счёт разности плотностей столба воды в опускных трубах и пароводяной смеси в подъёмных трубах - экранах (естественная циркуляция).

Топливо вместе с горячим воздухом через горелки 11 подается в топочную камеру, где сжигается. Продукты сгорания из топочной камеры направляются в пароперегреватель, экономайзер, воздухоподогреватель и через газоочистку удаляются в атмосферу.

Существуют различные конструктивные оформления котельных агрегатов, имеющих и другие схемы. Так, сжигание топлива может осуществляться не в факеле, а в слое. Циркуляция воды и пароводяной смеси в испарительной системе котла может быть принудительной с помощью насосов. Водяной экономайзер и воздухоподогреватель могут располагаться в несколько ступеней и т.д.


6.3.Процесс парообразования в pv-координатах

За начальную температуру воды при любом давлении, принимают температуру t=0°С. Таким образом, линия I на рис. 6.2 соответствует состояниям так называемой холодной жидкости при разных давлениях, имеющей температуру 0°С (изотерма холодной жидкости). Удельный объем воды при t=0°С принимается равным 0,001 м3/кг. Вследствие незначительной сжимаемости воды, линия I оказывается почти вертикальной прямой. Левее этой прямой находится область равновесного сосуществования воды и льда.

Рис. 6.2.График процесса парообразования в pv-координатах

За начало отсчета u, i и s для воды принято считать тройную точку TT (p0=611 Па, t0=0,01 0C, v0=0,00100 м3/кг).

Пренебрегая влиянием давления на изменение объема воды, считают для всех состояний на линии I v0=0,00100 м3/кг, u0=0, i0=0 и s0=0.

Конечное состояние воды в стадии подогрева (точка b) определяется достижением при заданном давлении температуры кипения, которая зависит от давления. Из рv—диаграммы следует, что с увеличением давления температура кипения увеличивается. Эта зависимость устанавливается опытным путем.

Состояния кипящей воды для различных давлений будут соответствовать линии II, которая называется нижней пограничной кривой. Она изображает зависимость удельных объемов кипящей воды от давления. На нижней пограничной кривой степень сухости х = 0.

Параметры кипящей воды приводятся в таблицах в зависимости их от давления или температуры. Количество теплоты, необходимое для доведения воды до кипения равно:


Дальнейший подвод теплоты к кипящей воде, который осуществляется в испарительном контуре парогенератора, сопровождается бурным парообразованием внутри жидкости и переходом части воды в пар. Таким образом, участку b—с будет соответствовать равновесное состояние смеси жидкости и пара (влажный насыщенный пар). В каждой точке этого процесса вода будет характеризоваться массовой долей содержащегося в ней сухого насыщенного пара (степенью сухости х).

Конечное состояние в этой стадии характеризуется полным превращением жидкости в пар, который будет иметь температуру, равную температуре насыщения (tc=tн) при заданном давлении. Такой пар, как уже упоминалось, носит название сухого насыщенного пара.

Процесс парообразования b—с является одновременно изобарным (p=p1=const) и изотермическим (T=T1=const). При этом затрачиваемая теплота расходуется не на повышение температуры, а только на преодоление сил притяжения между молекулами и на работу расширения пара.

Учитывая, что между температурой насыщения tн и давлением р существует однозначная связь, состояние сухого насыщенного пара будет определяться только одним параметром — давлением или температурой.

Состояния сухого насыщенного пара при разных давлениях будут соответствовать линии III, которая называется верхней пограничной кривой. Совершенно очевидно, что на верхней пограничной кривой в каждой точке степень сухости х=1.

Следует обратить внимание на то, что в процессе парообразования удельный объем воды резко увеличивается. Так, для воды при р = 0,1 МПа удельный объем кипящей воды v=0,001043 м3/кг, тогда как удельный объем сухого насыщенного пара равен 1,696 м3/кг. С увеличением давления эта разница уменьшается и в критической точке К удельные объёмы воды и пара равны 0,00326 м3/кг. При этом tкр=374,15 0С, а pкр=221,29 бар. При давлениях и температурах больших критических процесс парообразования отсутствует. Наблюдается переход воды в пар при пересечении изобары Tкр.


6.4.Таблицы водяного пара

Для идеальных газов зависимость между параметрами р, v и T устанавливается уравнением состояния p·v=R·T.

Причем два из этих параметров однозначно определяют третий. Перегретый и насыщенный пары по своим свойствам существенно отличаются от идеальных газов. Поэтому соотношения между параметрами р, v и Т перегретых и насыщенных паров значительно сложнее, чем уравнение состояния идеального газа.

Для насыщенных паров давление является функцией температуры (р=f(Т)). Таким образом, для насыщенных паров две переменные р и Т не определяют состояния. Причем удельный объем vx определяется степенью сухости пара х. Удельный объем vx является функцией параметров р и х или T и х. Объемы vb и vc являются функциями температуры или давления (рис. 6.2). Следовательно, чтобы определить состояние насыщенного пара, необходимо установить зависимости вида p=f(T), vb=j(р), vc=f(р).

В настоящее время известны многочисленные уравнения состояния перегретого водяного пара. Эти уравнения связывают между собой основные параметры р, v и Т.

Одним из наиболее точных уравнений состояния водяного пара является уравнение Вукаловича—Новикова. Однако такие уравнения, в том числе и уравнения М.П.Вукаловича и И.И.Новикова, имеют весьма сложный вид и расчеты по ним являются чрезвычайно трудоемкими. Поэтому при практических расчетах параметров паров используются специальные таблицы и диаграммы, составленные на основании экспериментальных и теоретических данных. В них приводятся соответствующие друг другу значения р, T, vb, vc, ib, ic, r, sb и sc.

В настоящее время составлены подробные таблицы для перегретых и насыщенных водяных паров до температур 1000 °С и давления 98 МПа. Таблицы составлены с высокой степенью точности. Известны три вида таблиц:

1) термодинамические свойства воды и водяного пара в состоянии насыщения (по температуре);

2) термодинамические свойства воды и водяного пара в состоянии насыщения (по давлению);

3) термодинамические свойства воды и перегретого пара.

В первой таблице указывают температуры сухого насыщенного пара и кипящей воды (по Цельсию и Кельвину) и соответствующие им давление, энтальпии, энтропии, теплоту парообразования и удельные объёмы.

Во второй таблице указывают давление сухого насыщенного пара и кипящей воды и соответствующие им температуру, энтальпии, энтропии, теплоту парообразования и удельные объёмы.

В третьей таблице для различных сочетаний температур и давлений приводятся соответствующие им энтальпия, энтропия и удельный объём воды или перегретого пара.


6.5. Is-диаграмма водяного пара

Для практических расчетов процессов водяного пара широкое применение получила is-диаграмма, на которой теплота и энтальпия измеряются линейными отрезками.

В системе координат i—s (рис. 6.3) сначала строятся нижняя (а-К) и верхняя (К—с) пограничные кривые по табличным данным i и s. Нижняя пограничная кривая проходит через начало координат, так как при t=0 0С энтропия и энтальпия приняты равными нулю.

Рис. 6.3. is-диаграмма водяного пара

Затем наносят изобары, которые в области насыщенного пара, будучи одновременно и изотермами, являются прямыми линиями, так как при p=const dq=di, а . Поэтому di=T·ds и при T=const i=T·s+const. Следовательно, на is-диаграмме угловой коэффициент изобары равен T. Поэтому чем выше давление насыщения, тем выше температура T и тем больше тангенс угла наклона изобары.

В области перегретого пара изобары и изотермы расходятся, причем изобары поднимаются кверху в виде логарифмических кривых, а изотермы стремятся к горизонтали. Это объясняется тем, что с понижением давления перегретый пар по свойствам приближается к идеальному газу, энтальпия которого зависит только то температуры, то есть линии t=const одновременно являются линиями i=const. Чем больше температура, тем выше расположена изотерма.

В области влажного пара нанесены линии одинаковой степени сухости х=const. На эту же диаграмму часто наносят еще изохоры, которые проходят круче изобар.

Is-диаграмма обладает рядом важных свойств: по ней можно быстро определить параметры пара и разность энтальпий в виде отрезков, наглядно изобразить адиабатный процесс, имеющий большое значение при изучении работы паровых двигателей, и решать другие задачи. Обычно для практического использования в большом масштабе строят так называемую рабочую часть диаграммы (на рис. 6.3 она ограничена штрих-пунктиром).


6.6.Процессы водяного пара на is-диаграмме

Как уже отмечалось, пар как реальный газ не подчиняется простым закономерностям идеальных газов, поэтому расчеты процессов с водяным паром проводятся с помощью таблиц или графически с помощью диаграмм.

Наиболее удобно оценивать характер изменения параметров разных процессов по is-диаграмме. Основные термодинамические процессы водяного пара (v=const, p=const, t=const) представлены на is-диаграмме соответствующими кривыми. Адиабатный процесс (s=const) изображается прямой, параллельной оси ординат. Следует обратить особое внимание на разные закономерности изменения параметров состояния пара в термодинамических процессах в зависимости от состояния пара (насыщенный или перегретый). Так, в изотермическом процессе в области насыщенного пара энтальпия изменяется значительно, а в области перегретого пара, особенно вдали от линии х=1, процесс t=const приближается к i=const. Это свидетельствует о том, что свойства перегретого пара в этих областях приближаются к свойствам идеального газа.





Отправить e-mail автору сайта на ice-axe@mail.ru







































Устройство и эксплуатация паровых и водогрейных котлов малой и средней мощности (Б. А. Соколов)

Содержание

IS-диаграмма

Водоснабжение, водоподготовка и очистка сточных вод



Яндекс.Метрика
Сайт создан в системе uCoz